Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions

نویسندگان

  • Michal Szostak
  • Malcolm Spain
  • Andrew J. Eberhart
  • David J. Procter
چکیده

Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C-N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C-O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the n(X) → π*(C═O) (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C-N/C-O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective conversion of alcohols and phenols to tetrahydropyranyl ethers catalyzed with N-chlorosaccharin under mild and solvent-free conditions

An efficient method is described for the mild and rapid tetrahydropyranylation of alcohols and phenols using a catalytic amount of N-chlorosaccharin (1 mol %) and 3, 4-dihydro-2H-pyran under solvent-free condition at room temperature. Benzylic alcohols and phenols containing electron withdrawing or donating groups in various positions of phenyl ring, cinamyl alcohol, primary, ...

متن کامل

Selective conversion of alcohols and phenols to tetrahydropyranyl ethers catalyzed with N-chlorosaccharin under mild and solvent-free conditions

An efficient method is described for the mild and rapid tetrahydropyranylation of alcohols and phenols using a catalytic amount of N-chlorosaccharin (1 mol %) and 3, 4-dihydro-2H-pyran under solvent-free condition at room temperature. Benzylic alcohols and phenols containing electron withdrawing or donating groups in various positions of phenyl ring, cinamyl alcohol, primary, ...

متن کامل

Direct reductive coupling of secondary amides: chemoselective formation of vicinal diamines and vicinal amino alcohols.

We report the first one-pot reductive homocoupling reaction of secondary amides and cross-coupling reaction of secondary amides with ketones to give secondary vicinal diamines and amino alcohols. This method relies on the direct generation of α-amino carbon radicals from secondary amides by activation with trifluoromethanesulfonic anhydride, partial reduction with triethylsilane and samarium di...

متن کامل

Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides.

Structural characterisation and reactivity of new tetrahedral intermediates based on a highly modular barbituric acid scaffold, formed via chemoselective electron transfer using the SmI2-H2O reagent, are reported. Lewis acid promoted cleavage of bicyclic α-amino alcohols affords vinylogous N-acyliminium ions, which undergo selective (>95 : 5, 1,4 over 1,2) capture with a suite of diverse nucleo...

متن کامل

Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to a-hydroxy-N-acyl-carbamides†

Structural characterisation and reactivity of new tetrahedral intermediates based on a highly modular barbituric acid scaffold, formed via chemoselective electron transfer using the SmI2–H2O reagent, are reported. Lewis acid promoted cleavage of bicyclic a-amino alcohols affords vinylogous N-acyliminium ions, which undergo selective (>95 :5, 1,4 over 1,2) capture with a suite of diverse nucleop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014